Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation.
نویسندگان
چکیده
Ischemia-reperfusion (IR) injury following lung transplantation remains a major source of early morbidity and mortality. Histologically, this inflammatory process is characterized by neutrophil infiltration and activation. We previously reported that lung IR injury was significantly attenuated in plasminogen activator inhibitor-1-deficient mice. In this study, we explored the potential role of tissue plasminogen activator (tPA) in a mouse lung IR injury model. As a result, tPA knockout (KO) mice were significantly protected from lung IR injury through several mechanisms. At the cellular level, tPA KO specifically blocked neutrophil extravasation into the interstitium, and abundant homotypic neutrophil aggregation (HNA) was detected in the lung microvasculature of tPA KO mice after IR. At the molecular level, inhibition of neutrophil extravasation was associated with reduced expression of platelet endothelial cell adhesion molecule-1 mediated through the tPA/ LDL receptor-related protein/NF-κB signaling pathway, whereas increased P-selectin triggered HNA. At the functional level, tPA KO mice incurred significantly decreased vascular permeability and improved lung function following IR. Protection from lung IR injury in tPA KO mice occurs through a fibrinolysis-independent mechanism. These results suggest that tPA could serve as an important therapeutic target for the prevention and treatment of acute IR injury after lung transplantation.
منابع مشابه
Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملTissue plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties.
OBJECTIVE Neutrophil infiltration of the postischemic tissue considerably contributes to organ dysfunction on ischemia/reperfusion injury. Beyond its established role in fibrinolysis, tissue-type plasminogen activator (tPA) has recently been implicated in nonfibrinolytic processes. The role of this serine protease in the recruitment process of neutrophils remains largely obscure. APPROACH AND...
متن کاملInterleukin-10 gene therapy attenuates pulmonary tissue injury caused by mesenteric ischemia-reperfusion in a mouse model.
To investigate the role of interleukin (IL)-10 gene therapy on the reperfusion-induced lung injury, we utilised the technique of liposomal gene delivery before the induction of intestinal ischemia. Plasmid DNA encoding human IL10 (hIL-10) or empy vector was injected intraperitoneally 24 h before the study. Male Balb/c mice randomized into three groups: Sham operated control (n = 12), empty plas...
متن کاملMCI-186 (edaravone), a free radical scavenger, attenuates ischemia-reperfusion injury and activation of phospholipase A(2) in an isolated rat lung model after 18 h of cold preservation.
OBJECTIVE Increased microvascular permeability and extravasation of inflammatory cells are key events in ischemia-reperfusion (IR) injury. We hypothesized that edaravone, a free radical scavenger, is able to attenuate IR lung injury by decreasing oxidative stress and phospholipase A(2) (PLA(2)) activation, which otherwise may lead to lung injury through PAF receptor (PAF-R) activation. METHOD...
متن کاملUrokinase-type plasminogen activator promotes paracellular transmigration of neutrophils via Mac-1, but independently of urokinase-type plasminogen activator receptor.
BACKGROUND Urokinase-type plasminogen activator (uPA) has recently been implicated in the pathogenesis of ischemia-reperfusion (I/R) injury. The underlying mechanisms remain largely unclear. METHODS AND RESULTS Using in vivo microscopy on the mouse cremaster muscle, I/R-elicited firm adherence and transmigration of neutrophils were found to be significantly diminished in uPA-deficient mice an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 300 5 شماره
صفحات -
تاریخ انتشار 2011